
Computational and energy efficiency performance

tracking of GridQube’s Distribution State

Estimator

28 March 2024 [Draft]

1 Background and Introduction

GridQube’s vision for computation engine development is to be explainable,
validated, auditable, as these are necessary conditions for decision support sup-
port systems in critical infrastructure. Accuracy and precision end up enabling
customers in the energy transition, as better decisions lead to more uptake or so-
lar, faster EV charging, higher reliability. Conversely, shortcuts in data and the
mathematical models lead to ambiguity, opaqueness, and lack of explainability.

Detailed models come with trade-offs in computational resource use though.
More detailed models need more data, and therefore require more memory,
which in turn often leads to increased computational requirements as well.

Therefore, the goal of this initiative is to track the resource intensity of
GridQube’s model-based computational technologies, and to communicate about
developments and improvements.

1.1 Advantages and disadvantages of model-free vs model-
based

Relative to model-free approaches, model-based approaches have a number of
advantages:

• no training needed, just initial data cleaning. training of model-free ap-
proaches is highly resource intensive.

• once set up and deployed, alerts can be set up for the model getting out
of sync with reality in a straightforward manner thanks to the residuals

• can easily be validated for correctness

However, model-based approaches have some down-sides as well:

• data needs to be cleaned and semantics established

1

• depend on a mostly complete electrical model

• model-free approaches are less expensive to evaluate than model-based
approaches.

2 Energy and performance tracking

We will describe different versions of our engine, and the functional differences,
and then develop performance and resource use comparisons across versions.

2.1 Methodology

• We use compiled artifacts of milestone versions of core (0.15.0 and 0.20.0)

• Each artifact is deployed on testbed machine (AMD EPYC 7313 16-Core
Processor, 32 threads total, L3 Cache 128MB)

• Three feeders models are used: small, medium and large EQL feeders
(GLY15A, CMA9A, LBH1B)

• Network model and measurements are uploaded, calibrated and state esti-
mation of 144 time steps is run based on historical data, 10 min intervals
for duration of 24 hours using web API calls (common to all versions
tested).

• We track CPU, memory and total time of GridQube backend process using
psrecord library https://pypi.org/project/psrecord/

• Each case was evaluated 50 times to establish variance

2.1.1 Feeder specifications

Table 1 lists the network model sizes for the three feeders.

Table 1: Features of the feeders used on the study.

GLY15A CMA9A LBH1B

buses initially 350 424 1331
buses after Kron’s reduction 35 63 157
MV/LV transformers 17 31 78
admittance matrix (nodes) 1400x1400 1696x1969 5324x5324
Jacobian matrix 313x280 543x504 1358x1256

2

https://pypi.org/project/psrecord/

2.2 Overview of Artifact Versions compared

2.2.1 0.15.0 vs 0.20.0

Summary of Differences

• improved docker base images

• improved data model - lines and line types - including support for phase-
coordinate NxN matrices

• highly optimised Kron’s reduction of admittance matrix using Intel PAR-
DISO routines

• refactored math routines into separate library for more focused develop-
ment, optimisation and unit testing

• UMFPACK and SuiteSparse integration: experimental solvers for large
networks

Key Learnings

• Optimised Kron reduction allows for larger feeders to be ingested, anal-
ysed, cleaned and solved more readily.

• High memory usage can cause crashes, particularly if multiple large feeders
need to be solved at the same time.

2.3 Further Comparisons between Intel MKL and AMD
BLIS

AMD BLIS “is a high-performant implementation of the Basic Linear Algebra
Subprograms (BLAS). The BLAS was designed to provide the essential ker-
nels of matrix and vector computation and are the most commonly used and
computationally intensive operations in dense numerical linear algebra.”

Our core software can be configured to use AMD BLIS or Intel MKL for
BLAS dense matrix computations. Performance testing was also carried out to
compare MKL and BLIS.

Note: AMD libFLAME has not been fully optimised for all LAPACK func-
tions. Therefore MKL was retained for LAPACK operations while BLIS was
used at the BLAS level.

More information : https://www.amd.com/en/developer/zen-software-studio/
applications/spack/spack-aocl.html

2.4 Results

2.4.1 Sample Run profiles - from upload to estimation

Below are sample run profiles of an estimation run with around 144 time steps
on the larger LBH1B feeder. Note the high CPU utilization in 0.15.0 at the

3

https://www.amd.com/en/developer/zen-software-studio/applications/spack/spack-aocl.html
https://www.amd.com/en/developer/zen-software-studio/applications/spack/spack-aocl.html

beginning of the run up to roughly 200s. This is the unoptimised Kron reduction.
Also note, the total run time is longer. More on this in later sections.

2.4.2 Summary Metrics, Mean (Std Dev)

Table 2 lists the observed computational aspects for the 3 feeders.

Table 2: Computational observations for the 3 feeders

GLY15A CMA9A LBH1B

Total CPU Usage (%) 217k (3.5k) 337k (13k) 1664k (51k)
Peak Memory (MB) 2254 (211) 3010 (759) 8959 (2137)
Average Memory (MB) 2717 (257) 3629 (1066) 10920 (2686)
Total Time (s) 154 (2.6) 221 (5.5) 1179 (23)

4

2.4.3 Small feeder - GLY15A - 17 transformers

2.4.4 Medium feeder - CMA9A - 31 transformers

5

2.4.5 Large feeder - LBH1B - 78 transformers

2.4.6 Comparison across feeders for version 0.20.0

2.4.7 Comparison Across core Versions

In this section we compare 4 different version of the core system: 0.15.0, 0.20.0
(default MKL), 0.20.0 with AMD BLIS and the latest version (MASTER) de-
ployed on internal test systems. Experimental set up here was 36 time steps,
50 iterations of the LBH1B feeder. Table 3 lists the observed computational
features.

6

Table 3: Comparison of computational features. Standard deviation in paren-
theses.

0.15.0 0.20.0 0.20.0 BLIS LATEST

Tot. CPU (%) 755k (34k) 433k (16k) 375k (23k) 350k (18k)
Avg. CPU (%) 1.4k (0.04k) 1.3k (0.03k) 0.98k (0.04k) 0.82k (0.03k)
Avg. Mem (GB) 7.44 (0.94) 7.30 (1.6) 6.85 (1.9) 3.45 (0.98)
Peak Mem (GB) 11.2 (1.0) 9.82 (2.0) 9.67 (2.0) 4.62 (1.1)
Tot. Time (s) 527 (12) 334 (7) 382 (10) 425 (13)
First Step (s) 159 (10) 9.74 (0.7) 10.1 (0.8) 11.5 (0.5)
Subs. Steps (s) 8.77 (0.6) 7.34 (0.6) 8.72 (0.6) 9.89 (0.7)

Notes:

• All metrics have been normalised against version 0.15.0.

• Total CPU % is the sum of instantaneous CPU % samples taken every
second from the time of starting the core until finishing the estimation.

• Average CPU % is the Total CPU % divided by the total number of
samples. This metric should be read in conjunction with the total time: a
certain version may be more computationally intensive but finishes faster,
while another version may have lower computation per unit time, but take
longer to complete.

• “First step” and “Subsequent (abbreviated to subs.) steps” are the nor-
malised times of the averages of the durations of the first estimation step
and subsequent estimation steps respectively. Version 0.20.0 with MKL
BLAS implementation is the fastest, but results indicate that 0.20.0 with
AMD BLIS is more computationally efficient - although BLIS takes longer,
the overall computational load is significantly less. Similarly the latest
version deployed on internal test systems is even more computationally
and memory efficient. Each timestep solving the LBH1B feeder is slightly
longer, but much more computationally and thus energy efficient.

7

3 Conclusions

This study illustrates the progress GridQube is making in terms of improving
the resource-intensity of its technologies. We pay attention to not just speed,
but also necessary CPU cycles and RAM usage. These aspects matter a lot when
running computations in parallel on servers, and for overall energy efficiency.

8

	Background and Introduction
	Advantages and disadvantages of model-free vs model-based

	Energy and performance tracking
	Methodology
	Feeder specifications

	Overview of Artifact Versions compared
	0.15.0 vs 0.20.0

	Further Comparisons between Intel MKL and AMD BLIS
	Results
	Sample Run profiles - from upload to estimation
	Summary Metrics, Mean (Std Dev)
	Small feeder - GLY15A - 17 transformers
	Medium feeder - CMA9A - 31 transformers
	Large feeder - LBH1B - 78 transformers
	Comparison across feeders for version 0.20.0
	Comparison Across core Versions

	Conclusions

